

Resilient Multi-Terminal HVDC Networks with High-Voltage High-Frequency Electronics

Dr Rob Sellick High Voltage Lab Manager, GE Global Research

January 14, 2015

Award No. DE-AR0000224

Project Objectives

- Overall goal: Develop components, architecture and controls for fault-resilient multi-terminal DC power system
 - Multi-terminal system, and DC/DC transformer
- Decrease cost and complexity and losses
 - Reduce number of components and conversions
- Published DC/DC transformers with AC stage up to 500Hz
 - GE project using 20kHz, to reduce physical size
- Performance metrics:
 - Losses, overall system cost
- Universities' focus on system-level for wind and solar applications

System Diagram

- 300kV DC offset voltage, with 2 x
 250kVA on DC/DC transformer
 - Discrepancy between design and as-built transformer
 - Difficulties with 300kV cable connector into tank
- Demonstration of MTDC system and control performance –12 modules, 10kV/600V, 100kW
 - Complexity to control seriesconnected devices
 - Simulation and HIL implementations by Universities

Project Achievements

- Successful demonstration of system architecture and enabling technologies
 - Understanding working multi-terminal control system
 - Improved understanding of transformer design to consider 3-D modelling
- Remaining challenges:
 - Long-term impact of high-frequency stress on insulation
 - Packaging for scalability into system-level HVDC DC/DC transformer
 - Performance under actual fault conditions

Technology-to-Market

- Ultimate objective: Transition to a GE business
- Several potential markets
 - Subsea, Marine, Renewables (Solar, Wind), Utilities
- Difficulty in validating costs
 - CAPEX
 - OPEX
 - Installation
 - Maintenance
 - Disposal

Post ARPA-E Goals

- GE internal program to build on this work
- Remaining technical challenges:
 - Packaging for reliability and maintainability
 - Long-term highfrequency stress on insulation
 - Field demonstration

Conclusions

- Working practical demonstrations for multiterminal network and DC/DC transformer
 - Enhanced understanding of transformer design and construction
 - Assisted development of 300kV connector supplier
 - Identified risks to be addressed in next phase of development

Within GE, established core multi-disciplinary team

Nanoclay Reinforced Ethylene-Propylene-Rubber for Low-Cost HVDC Cabling

Dr Qin Chen
Electrical Engineer

January 14, 2015

Award No. DE-AR0000231

Project Objectives

- Overall goal: Develop new, low-cost insulation for highvoltage direct current (HVDC) electricity transmission cables.
 - New insulation by embedding nano-materials into specialty rubber
- Decrease system-level cost
 - Increase power density
 - Decrease manufacture time and cost

State of the art

Lapped cable with multilayer structure

http://en.wikipedia.org/wiki/File:HVDC_Submarine_Cable_Cross_Section_-_from_New_Zealand_Inter-island_scheme.jpg

Extruded cable with uniform structure

http://upload.wikimedia.org/wikipedia/commons/8/8 2/Hochspannungskabel_110kV_400kV.JPG

DC Nanoclay-EPR: Experimental

Nanoclay filler

Mix with additives

Compounded material

Melt press, crosslink

Sheet samples for electrical testing

EPR: ethylene-propylene-rubber; XLPE: crosslinked polyethylene

More than 30 compositions studied, with different filler types, loadings, surface treatments

2014 Achievements

- 50kV DC cable prototype successfully extruded using AC EPR cable fabrication process
 - DC nanoclay-EPR insulation (345 mil), copper conductor (107 mm²)
- Promising lab test results
- 160kV breakdown
 - QA test, space charge
- Endurance testing ongoing
 - 92.5kV, no breakdown

DC XLPE after degasing (80°C, 5 days)

N-EPR, without degasing

Remaining challenges

 Better understanding of the role of nanoclay morphology & electrical properties on DC conduction and space charge behavior

Standard qualification test for the cable prototype

16.5 kV/mm field; 60°C with 2°C/mm gradient (anode cold)

Project Achievements

- Novel type of nanoclay reinforced Ethylene-Propylene-Rubber (EPR) has been developed, aiming at achieving layered structure in an extruded insulation
- Good HVDC performance and wide applicability
 - More than 30 compositions studied, with different filler types, loadings, surface treatments
 - Compromise between breakdown shape factor, thermal conductivity and relaxation time constant

Technology-to-Market

- Ultimate goal: Leverage new insulation material to reduce overall HVDC system costs
- Developed partnership with cable manufacturers
 - Ongoing discussions about potential JV / licensing opportunities with possible partners
- Accessory development required
- Field trial required
 - Conservative customers

Conclusions

- Significant technical progress with prototype at meaningful voltage level (50kV DC)
- Established key relationship with cable manufacturer
- Initial indications of good commercial viability

Novel DC Nanoclay-EPR

- Extruded cable with <u>layered</u> structure
 - <u>AC</u> nanoclay-EPR is a mature technology
 - Design for DC: morphology, electrical

